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Investigations of living organisms have led biologists and physicians
to introduce fundamental concepts, including Brownian motion, the First
Law of Thermodynamics, Poiseuille’s Law of fluid flow, and Fick’s Law of
diffusion into physics. Given the prominence of viscous forces within and
around cells and the experience of identifying and quantifying such resistive
forces, biophysical cell biologists have an unique perspective in discovering
the viscous forces that cause moving particles to respond to an applied force
in a nonlinear manner. Using my experience as a biophysical cell biologist,
I show that in any space consisting of a photon gas with a temperature
above absolute zero, Doppler-shifted photons exert a velocity-dependent
viscous force on moving charged particles. This viscous force prevents
charged particles from exceeding the speed of light. Consequently, light
itself prevents charged particles from moving faster than the speed of light.
This interpretation provides a testable alternative to the interpretation pro-
vided by the Special Theory of Relativity, which contends that particles are
prevented from exceeding the speed of light as a result of the relativity of
time.

PACS numbers: 03.30.+p, 03.65.Pm, 42.25.–p

1. Introduction

Ask not what physics can do for biology, ask what biology can do
for physics.

Stanislaw Ulam [1]
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Cells and the organelles within them live in a world whose dimensions
fall between those claimed by the world of macroscopic theoretical physics
and those claimed by the world of microscopic theoretical physics [2, 3]. In
working in this world of neglected dimensions, biophysical cell biologists
have used the known laws of physics to make great strides in understand-
ing the physical basis of life [4–26]. However, in working in the world of
cellular dimensions, biophysical cell biologists also have a unique opportu-
nity to contribute to “new physics” by looking for physical laws that are
capable of encompassing theoretical macrophysics and microphysics. This is
not such a wild speculation when one considers that much of what we call
“physics” comes from the study of living organisms [27]. The wave theory of
light as a description of diffraction came from Thomas Young’s [28] endeavor
to understand vision; the discovery of Brownian motion came from Robert
Brown’s [29, 30] study of pollen and pollination; the First Law of Thermo-
dynamics came from Robert Mayer’s [31] observation that the venous blood
of people living in the warm climate of Java is redder and thus more oxy-
genated than the venous blood of people living in the colder German climate;
the eponymous Law of laminar flow came from Jean Poiseuille’s [32] work
on describing the flow of blood; and the eponymous law of diffusion came
from Adolf Fick’s [33] work on describing transmembrane solute movement
in kidneys.

For over four centuries, Newton’s Philosphiae Naturalis Principia Math-
ematica has provided a method for describing the frame of the System of the
World, and the three laws of motion described in Book One of the Principia
have formed the theoretical foundations of terrestrial and celestial mechan-
ics [34, 35]. According to Newton’s First Law: Every body continues in its
state of rest, or of uniform motion in a right line, unless it is compelled to
change that state by forces impressed on it. While this statement is often
called the law of inertia, it is better characterized as the assumption of no
friction. That is, while the inertia of the body provides a resistance to any
change in motion; the body is considered to be inert to the medium though
which the body moves so that the medium provides no resistance to the
movement of the inert ial body.

Once one assumes that friction is negligible, Newton’s Second Law fol-
lows. According to Newton’s Second Law: The change of motion (dt) is
proportional to the motive force impressed; and is made in the direction of
the right line in which that force is impressed. That is, the time rate of
change of momentum of an object is proportional to the motive force ap-
plied to the object. Assuming, along with Newton, that the mass of the
body is a constant, it is the acceleration of the body and not the veloc-
ity that is proportional to the applied motive force. Newton’s Second Law
(F = m dv/dt), which serves to describe everything from the falling of an
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apple to the orbit of the Moon, implies that any particle with a constant and
invariant mass (m) can be accelerated from rest to any velocity (v) in time
(t) by the application of a large enough constant force (F ) or the application
of a small force for a long enough time.

In contrast to the Laws given by Newton in Book One of the Prin-
cipia, are the lesser-known propositions given in Book Two that describe
the motion of bodies in resisting mediums. While the Laws in Book One
can be considered to be simple and elegant descriptions of Platonic or
ideal situations that have become the foundation of theoretical macroscopic
physics, the lesser-known propositions in Book Two, which Newton wrote
in haste, can be considered to describe complex fudge factors that depend
on a number of variables, including the density and tenacity of the medium
as well as the size and shape of the inertial body [36]. These fudge fac-
tors, which give the resistance (viscous force) of the medium, were added
or subtracted by Newton in order to deduce the magnitude of the “absolute
force” applied to that body. The effects of these fudge factors on move-
ment were quantified by George Stokes [37], who provided the foundation for
“non-Newtonian” physics. By studying mixtures of beach sand or gelatin,
Osborne Reynolds [38] and Herbert Freundlich [39], respectively realized
that resistive media could have an infinite number of viscosities that de-
pended on the velocity of the particle moving through the medium. Me-
dia whose resistance increased with velocity were called dilatant and media
whose resistance decreased with velocity were called thixotropic. Realizing
that the structure and composition of the highly dynamic and ever changing
cytoplasmic space determined the characteristics of the motile processes that
take place within it, William Seifriz, Noburô Kamiya and their colleagues
championed the use of experimental techniques to characterize the nonlin-
ear resistance to movement provided by the living protoplasm itself [40–49].
As I will describe below, by using biophysical cell biological thinking, it is
possible to integrate the nonlinear properties of the viscous force into New-
ton’s Second Law to construct a simple, elegant, quantitative and testable
physical theory that is more robust than Newton’s Second Law in that it
also encompasses microphysical phenomena.

Influenced by the field theory of Maxwell [50, 51], scientists in the late
nineteenth century generally thought that the elementary unit of electricity
known as an electron was nonmaterial in nature and resulted from the release
of a center of strain in the nonmaterial aether [52–56]. Going against the
conventional wisdom, J.J. Thomson [57] resurrected Gustav Fechner’s and
Wilhelm Weber’s idea that electrons might be corpuscles of matter rather
than a released element of an nonmaterial aether and applied Newton’s
Laws to determine the mass of the electrons that made up cathode rays
[58–60]. While Newton’s Second Law was known to describe the motion of
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corpuscular bodies from apples to planets, it failed to describe the motion
of the corpuscular carrier of electrical charge. In his characterization of the
mass-to-charge ratio of the electron, Thomson [61] found that the amount of
force required to accelerate an electron increased nonlinearly as the electron’s
velocity asymptotically approached the speed of light (c). This indicated to
Thomson that the mass of the electron increased with velocity. Thomson
[62,63] concluded that the increased mass followed from Maxwell’s equations
and was a result of the magnetic field produced in the aether by the moving
charge.

Interpreting the mass of an electron did not turn out to be straight-
forward. Hendrik Lorentz [64–66] postulated that the mass of an electron
moving through an isotropic space was anisotropic and calculated that the
longitudinal mass or the component of the mass of an electron parallel to
the direction of motion increased with an increase in velocity by a factor of
3
√

1− v2/c2, while the transverse mass or the component of the mass of an
electron perpendicular to the direction of motion increased with an increase
in velocity by a factor of

√
1− v2/c2. The reciprocal of the latter expression

is commonly known as the Lorentz factor (γ).
Based only on his postulates of the principle of relativity and the con-

stancy of the speed of light, Albert Einstein [67] independently derived the
velocity-dependent longitudinal and transverse components of the mass of
the electron in the dynamical part of the paper entitled, On the Electrody-
namics of Moving Bodies and concluded that the increase in mass might re-
sult from the withdrawal of energy from the electrostatic field and thus might
only be apparent. He further wrote that: in comparing different theories of
the motion of the electron we must proceed very cautiously. Nevertheless, for
many physicists, the interpretation that the mass of an electron increased in
a velocity-dependent manner was useful in explaining the nonlinear nature
of the force-acceleration relation for an electron [68–73].

While various mechanical and electromagnetic interpretations of the re-
lationship between impulse (the product of force and time) and velocity were
proffered in the first decades of the 20th century [74,75], by the 1920s, there
was a general agreement that the nonlinear relationship between impulse and
velocity was explained in terms of the relativity of space-time [76–79]. That
is, the duration of time is a relative quantity that depends on the relative
velocity of the electron and the experimenter in the laboratory frame.

According to this kinematic space-time interpretation of Einstein’s Spe-
cial Theory of Relativity, the duration of time (dt) varies in a velocity-
dependent manner according to the following equation
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dtproper =
√

(1− v2/c2) dtimproper , (1)

where dtproper and dtimproper are the proper duration and improper dura-
tion of time, respectively. According to the space-time interpretation of the
Special Theory of Relativity, the force-acceleration relation is nonlinear be-
cause a moving particle experiences a constant force for a shorter duration
of time (dtproper) than it would if the particle were at rest in the laboratory
frame (dtimproper). That is, as a particle goes faster and faster, it experiences
the motive force for a shorter and shorter duration of time.

Since movement is one of the fundamental attributes of life [4], biophys-
ical cell biologists spend a great deal of time investigating movement, in-
cluding the movement of mechanochemical proteins such as myosin, dynein
and kinesin [80–83]; the movement of water and ions through channels in
membranes [84–89]; the movement of small molecules through plasmodes-
mata [90]; the movement of proteins from their site of synthesis to their
site of action [91]; the movement of membrane vesicles, tubules [92–94]; and
organelles [95, 96] throughout the viscous cytoplasm [97, 98]; the movement
of chromosomes during mitosis and meiosis [99–101]; the movement of cilia
and flagella [102, 103]; and the movement of the polymers of the extracel-
lular matrix that allow the growth of plant cells [104–107]. Each one of
these cellular movements, as well as others not listed here, involves a mo-
tive force that must overcome a non-negligible viscous force. Consequently,
the acceleration is not proportional to the applied force. In fact, given
the low Reynolds Numbers [108], which are system-dependent dimensionless
numbers that relate the motive force to the viscous force [109], in a cell,
movement ceases immediately after the removal of a motive force, and it is
the velocity rather than the acceleration of a body that is proportional to
the motive force [110–112].

Given the prominence of viscous forces within and around a cell [113,114]
and the experience of identifying and quantifying such resistive forces, the
first question a biophysical cell biologist asks when confronted with the non-
linear relationship between force and the acceleration of an electron is, “Can
the nonlinear relationship between force and acceleration observed for parti-
cles moving at speeds approaching the speed of light be explained by invoking
the presence of a viscous force (without reintroducing the contentious nine-
teenth century aether)?” Biophysical cell biologists are at an advantage in
discovering the viscous forces that cause moving particles to respond to an
impulse in a nonlinear manner (Fig. 1).
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Fig. 1. The impulse needed to accelerate an electron (m = 9.1×10−31 kg) from rest
(v = 0) to a given velocity assuming Newton’s Second Law is valid and impulse =∫

F dt = mv or that Newton’s Second Law is invalid and impulse =
∫

F dtimproper #=
mv.

2. Results and discussion

When a biophysical cell biologist examines the movement of or in a cell,
he or she asks, “What are the physical attributes of the space through which
the body moves?” A biophysical cell biologist strives to answer this question
in spite of the fact that the structure and composition or organization of
the space itself is not static. Likewise, when one studies the movement of a
particle through a space, one must ask the same question. Let us consider the
movement of an electron through space where the motive force is provided
by an electric field. At any temperature above 0K, the space consists of a
radiation field composed of photons. The photons can be considered to have
a black body distribution [115] (Fig. 2).

The electron moving through the black body radiation field experiences
the photons that make up the field as being Doppler shifted [67, 116, 117].
The photons that collide with the front [118] of the moving electron will
be blue shifted and the photons that collide with the back of the moving
electron will be red shifted (Fig. 3).

Since the electron is moving at a velocity (v) relative to the center of mo-
mentum of the radiation field, as a result of the Doppler effect, the electron
will experience the radiation field as being anisotropic whereas an observer
who is at rest with the radiation field will observe it as being isotropic.
Consequently, I will describe the radiation experienced by the moving par-
ticle with an original relativistic wave equation that describes the propa-
gation of light waves between inertial frames moving relative to each other
at velocity v and satisfies the requirements set by the Michelson–Morley
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Fig. 2. The distribution of energy density with respect to wavelength in a photon
gas with a temperature of 300 K. The peak will shift to the left and the area under
the curve will increase for a photon gas with a temperature > 300 K; and the peak
will shift to the right and the area under the curve will diminish for a photon gas
with a temperature < 300 K.

Fig. 3. An electron moving through a photon gas experiences the photons as being
Doppler shifted. The photons that strike the front of the electron and slow it down
are blue shifted (have a higher frequency) and the photons that strike the back of
an electron and speed it up are red shifted (have a lower frequency).

experiment [119–121]. This new relativistic wave equation is given by

∂2Ψ

∂t2
= cc′

√
c− v cos θ√
c + v cos θ

∂2Ψ

∂x2
, (2)

or
∂2Ψ

∂t2
= cc′

√
1− (v cos θ)/c√
1 + (v cos θ)/c

∂2Ψ

∂x2
, (3)

where v is the absolute value of the velocity and θ is the angle between
the velocity of a particle and the velocity of a photon (or wave). When
the movements of a photon and a particle are parallel, θ = 0 radians and
cos θ = 1; and, when the movements of a photon and a particle are antipar-
allel, θ = π radians and cos θ = −1 (see Appendix A).
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Different aspects of the speed of a photon or a light wave are represented
by c and c′. The parameter c, which is absolute and independent of the
velocity of the source or the observer, gives the speed of the photon or wave
through the vacuum and is equal to the square root of the reciprocal of
the product of the electric permittivity (ε0) and the magnetic permeability
(µ0) of the vacuum. It was the idea of the absolute nature of the speed
of light that originally attracted Max Planck to Einstein’s Special Theory
of Relativity [122]. However, as a consequence of the Doppler Effect, light
also has another characteristic speed c′, which is local and depends on the
relative velocity of the source and observer. c′ gives the ratio of the angular
frequency (ω) of the source in its inertial frame to the angular wave number
(k) observed in any inertial frame (c′ ≡ ωsource/kobserver). At any relative

velocity between the source and the observer, cc′
(√

1−(v cos θ)/c√
1+(v cos θ)/c

)
= c2. After

canceling c on both sides, we get a relativistic dispersion relation that must
be satisfied when the general plane wave solution of the relativistic wave

equation has the form: Ψ = Ψoe
i

(
kobserverr−ωsource

√
c−v cos θ√
c+v cos θ

t

)

. The relativistic
dispersion relation is

c′
(√

1− (v cos θ)/c√
1 + (v cos θ)/c

)
= c . (4)

At v = 0, the new relativistic wave equation reduces to Maxwell’s wave
equation [50].

Introducing the perspicuous correction factor
(
c = c′

√
1−(v cos θ)/c√
1+(v cos θ)/c

)
into

Maxwell’s wave equation ensures the invariance of this new relativistic wave
equation when describing waves traveling between two inertial frames. A rel-
ativistic Doppler equation is obtained naturally from the dispersion relation

kobserver = ksource

√
1− (v cos θ)/c√
1 + (v cos θ)/c

, (5)

kobserver = ksource
(1− v cos θ)/c)√
1− (v2 cos2 θ)/c2

. (6)

The relativistic Doppler equation allows one to transform angular wave num-
ber instead of length and duration between inertial frames.

According to Eq. (6), the angular wave numbers in inertial frames moving
relative to each other at velocity v are related to each other by a Galilean
transformation in the numerator and a Lorentz-like transformation in the
denominator. The Galilean transformation in the numerator is dominant at
low velocities while the Lorentz-like transformation in the denominator is
dominant at high velocities.
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The experimental observations of Ives and Stillwell [117] on the effect
of velocity on the displacement of the spectral lines of hydrogen confirm
the utility and validity of using the new relativistic wave equation. How-
ever, whereas the Special Theory of Relativity [67, 123] predicts the trans-
verse Doppler Effect in an inertial system, the relativistic wave equation
given above does not predict any Doppler shift exactly perpendicular to
the velocity of an inertial particle. Both the Special Theory of Relativity
and the relativistic wave equation presented above predict that averaging
the forward and backward longitudinal Doppler-shifted light will give the
Lorentz factor also known as the “time dilation” factor as observed by Ives
and Stillwell [117]. Consequently, experiments that average the forward
and backward longitudinal Doppler shifts [117,124] are consistent with both
treatments.

The linear momentum of a photon is given by !k, where ! is Planck’s
constant divided by 2π, and k, the angular wave number, is equal to 2π/λ
[125]. As a consequence of the relativistic Doppler effect, upon interacting
with a photon, the change in the linear momentum of an electron (d!kelectron)
moving with speed v is velocity dependent and is given by

d!kelectron = !ksource

√
c− v cos θ√
c + v cos θ

, (7)

d!kelectron = !ksource
(1− (v cos θ)/c)√
1− (v2 cos2 θ)/c2

. (8)

For convenience, I will split Eq. (8) into two equations — one for an elec-
tron moving parallel (cos θ = 1) relative to the photons or waves propagat-
ing from the source and one for an electron moving antiparallel (cos θ = −1)
relative to the photons or waves propagating from the source. The momen-
tum of the light experienced by the back of an electron traveling parallel to
a photon propagating from the source is

d!kelectron = !ksource
(1− v/c)√
1− v2/c2

. (9)

This equation is reminiscent of the equation that describes the Compton
Effect, where !ksource [126] is the momentum of a photon before a collision
and d!kelectron is the momentum transferred from the photon to the “back”
of the electron as it is pushed forward [127]. The momentum of the light
experienced by a particle traveling antiparallel to light propagating from the
source is

d!kelectron = !ksource
(1 + v/c)√
1− v2/c2

. (10)
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This equation is similar to the equation that describes the inverse Comp-
ton Effect, where !ksource is the momentum of a photon before a collision
and d!kelectron is the momentum transferred from the photon to the “front”
of the electron as it is pushed back [128].

Let us assume that the moving electron interacts with one photon from
the front and one photon from the back. The net momentum experienced
by this electron moving through a photon gas is antiparallel to the velocity
of the electron and would be

d!kelectron = !ksource
(1− v/c)− (1 + v/c)√

1− v2/c2
, (11)

d!kelectron = !ksource

(
−2v

c

)
√

1− v2/c2
. (12)

Since the momentum of a blue-shifted photon, striking the front of a
moving electron is greater than the momentum of a red-shifted photon strik-
ing the back of a moving electron, the momentum of the moving electron
decreases. The average decrease of momentum (p = mv = d!kelectron) ex-
perienced by a moving electron upon colliding with one coaxial photon in a
photon gas would be [129]

d!kelectron = −
1
2 !ksource

(
2v
c

)
√

1− v2/c2
, (13)

d!kelectron = −
!ksource(v

c )
√

1− v2/c2
, (14)

where the negative sign indicates that the momentum of the electron moving
through the radiation field decreases.

Since the “average photon” in the photon gas can strike the moving
electron at any angle from 0 to ±π

2 with differing effectiveness, the aver-
age transfer of momentum [130] from the radiation field to the electron is
!ksource

( 1
4 )( v

c )√
1−v2/c2

for a single collision. As a consequence of the omnipresent
existence of a photon gas in space at all temperatures greater than absolute
zero, contrary to Newton’s First Law, moving charged particles are not inert
to the photons in the photon gas through which they move and all bodies
composed of charged particles will slow down. In an adiabatic photon gas,
this will result in an increase in temperature and an increase in the peak
angular wave number of the photons in the photon gas. In an isothermal
photon gas, this will result in an expansion of the photon gas. Since a pho-
ton gas exists at all temperatures above absolute zero, Newton’s First Law is
only valid for charged particles at absolute zero and absolute zero, according
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to the Third Law of Thermodynamics, is unattainable [131]. By taking into
consideration the thermodynamics of the photon gas occupying the space
through which the electrons move, I will recast Newton’s Second Law in an
alternative form that applies to charged particles [132] moving at velocities
close to the speed of light.

The velocity-dependent relativistic Doppler-shifted momentum of the
photon gas provides the basis for a velocity-dependent viscous force (F Dopp)
that counteracts the applied force (F app) used to accelerate a particle

F app + F Dopp = m
dv

dt
, (15)

where F app and F Dopp are antiparallel by definition.
The viscous force exerted by the radiation field on a moving particle is a

function of the collision rate between the moving particle and the photons
in the field. The collision rate (dn

dt ) depends on the photon density (ρ), the
speed of the particle (v) and the cross-section of the photon (σ) according
to the following equation

dn

dt
= ρvσ . (16)

The photon density is a function of the absolute temperature. The abso-
lute temperature on Earth and in the cavity of some accelerators, including
the LINAC at Stanford University, is close to 300K, while the absolute tem-
perature of the cosmic microwave background radiation and in the cavity
of other accelerators, including the LINAC at Jefferson Laboratory and the
Large Hadron Collider at CERN, is 2.73K.

Assuming a blackbody distribution of energy, the photon density can be
calculated from Planck’s black body radiation distribution formula. Accord-
ing to Planck [115], the energy density per unit wavelength interval (u) is
given by

u =
8πhc

λ5

1
exp[ hc

λkT ]− 1
. (17)

The peak wavelength of a photon gas can be obtained by differentiating
Eq. (17) with respect to wavelength or by simply using Wien’s distribution
law

λpeak = 2.89784× 10−3mK/T = w/T , (18)
where w is called the Wien coefficient and is equal to 2.89784 × 10−3 mK.
The peak wavelengths (λpeak) in 300K and 2.73K radiation fields are 9.66×
10−6 m and 1.87× 10−3 m, respectively. The energies of photons with these
wavelengths are given by Planck’s equation

E =
hc

λpeak
, (19)
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and are 2.06 × 10−20 J/photon and 1.06 × 10−22 J/photon for the peak
photons in a 300K and 2.73K radiation field, respectively. The total energy
density (U) of a radiation field can be determined by using the Stefan–
Boltzmann equation or by integrating Eq. (17) over wavelengths from zero
to infinity [133]

U =
∫

u dλ , (20)

U =
∫

8πhc

λ5

1(
exp[ hc

λkT ]− 1
) dλ , (21)

U =
8πk4T 4

c3h3

∫
x3

[exp(x)− 1]
dx , (22)

U =
8πk4T 4

c3h3

(
π4

15

)
, (23)

U =
8π5k4

15c3h3

(
T 4

)
= 7.57× 10−16

(
T 4

)
. (24)

The quantity 7.57× 10−16 Jm−3 K−4, known as the radiation constant,
is equal to (4σB/c), where σB represents the Stefan–Boltzmann constant
(5.6704 × 10−8 Jm−2 s−1 K−4). The total energy densities (U) of photon
gases with temperatures of 300K and 2.73K are 6.13 × 10−6 J/m3 and
4.02 × 10−14 J/m3, respectively. The photon densities (ρ) in 300K and
2.73K radiation fields, which are obtained by dividing Eq. (24) by Eq. (19),
are 2.98× 1014 photons/m3 and 3.79× 108 photons/m3, respectively.

Although light is often modeled as an infinite plane wave or a mathe-
matical point, the phenomena of diffraction and interference indicate that
a photon has neither an infinite nor a nonexistent width, but something in
between [134, 135]. By analyzing the relationship between the size of silver
halide grains and the light-induced darkening of film, Ludwik Silberstein
introduced the cross-sectional area of Einstein’s light quantum or light dart
as a useful working hypothesis to quantitatively describe the photographic
process [136–138]. Silberstein calculated the cross-sectional area of a 470 nm
photon to be between 8.1 × 10−15 m2 and 97.3 × 10−15 m2. I also assume
that a photon has a finite width as well as a wavelength and that its geo-
metrical cross-section [139] (σ) is given by

σ = πr2 , (25)

where r is the radius of the photon (see Appendix B). The radius of a
photon can be estimated by following the example of Niels Bohr and using a
mixture of classical and quantum reasoning. I make use of the fact that all
photons, independent of their wavelength, have the same quantized angular



Charged Particles are Prevented from Going Faster than the Speed . . . 2309

momentum (L = !), and that classically, angular momentum is equal to
mωΓ r2 or ωI. I is the moment of inertia and Γ is a geometrical factor that
relates I to mr2 such that Γ = I/mr2. I am assuming that Γ is equal to
unity, which would be correct if the photon consisted of a point mass at the
end of a mass-less string of length r.

By using E = mc2 = !ω and assuming that the equivalent mass (m) of
a photon that interacts with matter is given by !ω/c2, then the radius (r) of
a photon will be equal to

√
!

mω =
√

!c2

!ω2 =
√

c2

ω2 = c/ω = 1
k = λ

2π , which is
the reciprocal of the angular wave number [140] and equal to the wavelength
of the photon divided by 2π. Thus, the geometrical cross-section, which is
related to its angular wave number and wavelength, is given by

σ = π

(
1
k

)2

= π

(
λ

2π

)2

=
λ2

4π
. (26)

According to this reasoning, the cross-sections of thermal (300K) pho-
tons and microwave (2.73K) photons are 7.43×10−12 m2 and 2.78×10−7 m2,
respectively. The cross-sectional area of 470 nm photons given by Eq. (26)
is 17.6 × 10−15 m2, consistent with the values of 470 nm photons given by
Silberstein [136,137].

According to Eq. (16), the collision rate dn/dt between a moving charged
particle and photons in a photon gas is dependent on the speed of the
charged particle. After factoring in the photon densities and the cross-
section of the peak photons, I find that the collision rates are equal to
(2214.14 collisions/m)v and (105.36 collisions/m)v for 300K and 2.73K ra-
diation fields, respectively, where v is the speed of the charged particle rela-
tive to the observer who experiences the photon gas as being isotropic. For a
given speed, the collision rate increases with the temperature of the radiation
field. This is because the photon density increases with the third power of
the temperature while the geometrical cross-section decreases with the first
power of the temperature. In a 300K thermal radiation field, at speeds ap-
proaching the speed of light, the collision rate will be about 6.64× 1011 s−1,
while it will be about 3.16× 1010 s−1 for a 2.73K microwave radiation field.

The velocity-dependent viscous force (F Dopp) exerted on a moving elec-
tron by the photons in the photon gas is given by the product of the collision
rate and the average velocity-dependent momentum of a photon

F Dopp = −
(ρσv)(!ksource)

(
1
4

) (
v
c

)
√

1− v2/c2
, (27)

F Dopp = −
(ρσh/4λsource)

(
v2

c

)

√
1− v2/c2

. (28)
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At v = 0, there is no net viscous force and the average momenta
(h/4λsource) of photons in a thermal radiation field and a microwave ra-
diation field are 1.72× 10−29 kg m/s and 8.86× 10−32 kg m/s, respectively.
Since when v = 0, the collisions with the photons in the photon gas are
random, the electron will exhibit Brownian motion.

We can define the product of ρ and σ as the linear photon density (ρL),
replace h in Eq. (28) with e2

ε0cα , using the definition of the fine structure
constant [138, 139] (α), substitute µ0 for 1/ε0c2, and replace λsource with
w/T to get

FDopp = − [ρLTe2µ0/4wα](v2)√
1− v2/c2

. (29)

This expression of the viscous force shows explicitly that the viscous
force depends on the temperature, the square of the charge of the moving
particle, the magnetic permeability of the vacuum, and the fine structure
constant, which quantifies the strength of the interaction between a charged
particle and the radiation field. The viscous force vanishes, as either the
charge of the moving particle or the temperature goes to zero.

The linear photon density (ρL, in m−1) is only a function of temperature
and can be written as σBw3T

πhc2 or 7.375 m−1 K−1 T . By combining the con-
stants in Eq. 29, the viscous force experienced by a univalent particle can
be expressed exclusively in terms of temperature and velocity

F Dopp = −
[
1.41× 10−39 N s2 m−2 K−2

]
T 2 (v2)√

1− v2/c2
. (30)

The magnitude of the friction on a univalent particle caused by the
viscous force depends on the velocity of the particle and the square of
the temperature. The coefficient of friction of the photon gas is given by
FDopp

v = [1.41 × 10−39N s2 m−2 K−2]T 2 (v)√
1−v2/c2

. The power dissipated by
the photon gas is given by vFDopp. The power dissipated not only depends
on the temperature but will increase the temperature and/or the volume
of the space composed of the photon gas. Such an effect may have been
important in the expansion of the Universe.

The equation of motion that accounts for the temperature and velocity-
dependent viscous force experienced by a univalent particle is

Fapp −
[
1.41× 10−39 N s2 m−2 K−2

]
T 2 (v2)√

1− v2/c2
= m

dv

dt
(31)

which is equivalent to

Fapp + FDopp = m
dv

dt
. (32)
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Any equation that describes motion at velocities close to the speed
of light must reduce to Newton’s Second Law for motion at small veloci-
ties [143]. Indeed Eq. (31) reduces to Newton’s Second Law when v & c

and Fapp ' [1.41 × 10−39 N s2 m−2 K−2]T 2 (v2)√
1−v2/c2

. The integration of

Eq. (31) with respect to distance yields a quantitative relationship between
the apparent mass of a charged particle and energy [144].

At temperatures greater than 0K, the photons, which make up the pho-
ton gases that occupy all space, act as dilatant, shear-thickened, viscous
“non-Newtonian” solutions. While I am not attempting to resurrect the
complex and self-contradictory 19th century aether by any means, oddly
enough, the rheological concept of dilatancy was first developed by Osborne
Reynolds [38, 145] when he was contemplating the nature of the luminous
ether. Quantum electrodynamics handles the viscous force in terms of renor-
malization (see Appendix C).

Equation (31), which is based on biophysical cell biological analogies
[146] contrasts with Planck’s [147] relativistic version of Newton’s Second
Law, which is

Fapp =
d

dt

mv√
1− v2/c2

. (33)

Depending on the assumptions [148–153] used to differentiate Eq. (33),
the following solutions have been proffered

Fapp

√
1− v2/c2 = m

(
dv

dt

)
, (34)

and
Fapp

3
√

1− v2/c2 = m

(
dv

dt

)
. (35)

In contrast to Eq. (31), where the term that includes the “Lorentz factor”
is subtracted from the applied force, in Eqs. (34) and (35), the applied force
is multiplied by the terms that include the “Lorentz factor.” Equations
(31), (34), and (35) all predict that the relation between the impulse needed
to accelerate an electron from rest to a given velocity and that velocity
will be nonlinear (Fig. 4). However, the opto-mechanical Doppler Effect
model based on biophysical cell biological reasoning, further predicts that the
applied force necessary to overcome the viscous force in order to accelerate
a charged particle from rest to velocity v in time t will be temperature
dependent.

A test of whether the magnitude of the impulse needed to accelerate
an electron from rest to a given velocity is influenced by temperature will
determine whether the limiting speed of light is a consequence of the viscous
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Fig. 4. The impulse needed to accelerate an electron from rest to a given velocity
at two different temperatures as predicted by the opto-mechanical Doppler model
(Eq. (31)) using the geometrical cross-section, two interpretations of the Special
Theory of Relativity (Eqs. (34) and (35)), and the opto-mechanical model using
the Thompson scattering cross-section (see Appendix B). Equations (34) and (35)
have no temperature dependence.

force provided by the Doppler-shifted photons that populate every space as
predicted by the biophysical cell biologist’s model or due to the relativity of
time as predicted by Einstein’s Special Theory of Relativity. The test can
be performed by measuring the impulse necessary to accelerate an electron
from rest to a given velocity [154] at different temperatures.

3. Conclusion

While it is possible that there is more than one mechanism to prevent
charged particles from moving faster than the speed of light, the causal,
picturesque and testable biophysical cell biologist’s opto-mechanical working
hypothesis presented here indicates that light can act as an ultimate speed
limit to any charged particle because, at velocities approaching the speed
of light, the photon gas that occupies the space through which the particles
move is not a “Newtonian” photon gas with a single and trivial viscosity but
is a “non-Newtonian”, shear-thickened or dilatant photon gas that becomes
infinitely viscous as the velocity of a moving charged particle approaches the
speed of light. That is, as a result of the Doppler Effect, light itself, and
not the relativity of time, may prevent charged particles from moving faster
than the speed of light.

I dedicate this paper to my brother Scott Wayne.
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Appendix A

It is possible that Maxwell’s second order wave equation [50] is not the
best starting point for describing relativistic phenomenon since his second
order wave equation does not contain a relative velocity term. Consequently
I introduced a new form-invariant relativistic wave equation, which is con-
sistent with known phenomena that depend on the relative velocity of the
source and observer. Since the derivations of Eqs. (31) and (32) critically de-
pend on the introduction of this new relativistic wave equation, here I show
that the new relativistic wave equation is consistent with the two funda-
mental principles upon which Einstein based the Special Theory of Rela-
tivity [67]. I assume that the new relativistic wave equation, which is form
invariant and consistent with the principle of relativity, is the equation of
motion that describes the properties of light experienced by an electron mov-
ing at velocity v relative to the center of momentum of the photon gas, which
is at rest relative to the inertial frame of the observer

∂2Ψ

∂t2
= cc′

√
c− v cos θ√
c + v cos θ

∇2Ψ . (36)

I also assume that the following equation is a general plane wave solution
to the second order relativistic wave equation given above

Ψ = Ψoe
i
“
kobserverr − ωsource

√
c−v cos θ√
c+v cos θ

t
”

. (37)

By substituting Eq. (37) into Eq. (36) and taking the spatial and tem-
poral partial derivatives, we can obtain the relativistic dispersion relation

cc′
(√

c− v cos θ√
c + v cos θ

)
i2k2

observerΨ = i2ω2
source

(
c− v cos θ

c + v cos θ

)
Ψ . (38)

After canceling like terms, we get

cc′k2
observer = ω2

source

√
c− v cos θ√
c + v cos θ

. (39)

Since c′ ≡ ωsource
kobserver

, the above equation simplifies to

ckobserver = ωsource

√
c− v cos θ√
c + v cos θ

. (40)

By solving for c, the speed of the wave, we get the relativistic dispersion
relation

c =
ωsource

kobserver

√
c− v cos θ√
c + v cos θ

. (41)
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The relativistic dispersion relation tells us that while the observed angu-
lar wave number of light and consequently its observed momentum varies in
a velocity-dependent manner, the speed of light (c) is invariant and indepen-
dent of the motion of the source or observer, consistent with the principle
of the constancy of the speed of light. That is, while the speed of light is
independent of the relative velocity between the source and the observer, the
relative velocity between the source and the observer results in a “stretch-
ing” or “compressing” of the light wave without changing its speed. Since
the stretched light waves transfer a smaller quantity of momentum per unit
time compared with the compressed light waves, an electron moving through
a photon gas with a temperature greater than 0K experiences a velocity-
dependent viscous force.

Appendix B

The degree of nonlinearity between the applied force and the rate of
change in momentum predicted by Eqs. (31) and (32) depends quantitatively
on the calculated geometrical cross-sections of the photons that comprise the
photon gas through which the charged particle moves. It is natural to wonder
what is the effect of replacing the geometrical cross-section of a photon
with the Thomson scattering cross-section [155], which is not a geometrical
cross-section but a measure of the probability that a photon will interact
with an electron. The Thomson cross-section is used to model the Sunyaev–
Zel’dovich effect in which high energy electrons are decelerated by the cosmic
microwave background and produce X-rays as a result of inverse Compton
scattering [156]. In contrast to the geometrical cross-section, the Thomson
scattering cross-section is wavelength- and thus temperature-independent.
The Thomson scattering cross-section (σT) is 6.6524586×10−29 m2, which is
orders of magnitude smaller than the geometrical cross-section of the photon
presented in this paper or calculated by Silberstein [136, 137]. Using the
Thomson scattering cross-section instead of the geometrical cross-section,
the formula for the temperature- and velocity-dependent viscous force given
by Eq. (31) becomes

Fapp −
σTσB

c3
T 4 (v2)√

1− v2/c2
= m

dv

dt
. (42)

After combining the constants we get

Fapp −
[
1.40× 10−61 N s2 m−2 K−4

]
T 4 (v2)√

1− v2/c2
= m

dv

dt
. (43)

While the temperature dependence is greater in the equation that uses
the Thompson scattering cross-section than in Eq. (31), the coefficient in the
equation that uses the Thomson scattering cross-section is approximately
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twenty-two orders of magnitude smaller than the coefficient in Eq. (31) that
uses the geometrical cross-section, and, as shown in Fig. 4, the viscous force
that results from the relativistic Doppler effect would only be detectable at
velocities infinitesimally close to the speed of light.

Since the acceleration of an electron parallel to the electric field of the
incident radiation may also be retarded by the photon gas and as a result
of the retardation, dissipate energy in a manner that may affect the scat-
tering cross-section, I calculated a scattering cross-section using the Larmor
formula in a manner following Thomson [155] and Purcell [157] except that
I substituted a2 = ( eE

m + FDopp)2 for a2 = e2E2/m2, where E represents
the electric field of the incident radiation. The Larmor formula describes
the influence of acceleration on the power emitted by a moving charge with
mass m and charge e. The resulting formula for the scattering cross-section
(σs) is

σs =
e4

6πε20m
2c4

+
2FDoppe3

6πε20m
2c4E

+
F 2

Doppe
2

6πε20m
2c4E2

. (44)

The first term is equal to the Thomson scattering cross-section, which
is both temperature- and velocity-independent. Thus the temperature- and
velocity-dependent cross-section can be written as

σs = σT +
2FDoppe3

6πε20m
2c4E

+
F 2

Doppe
2

6πε20m
2c4E2

. (45)

When either the temperature or velocity approaches zero, the above scat-
tering cross-section reduces to the Thomson scattering cross-section. While
the temperature- and velocity-dependent cross-section given above is greater
than σT, it is still small enough that, if it were an accurate representation
of the cross-section of a photon, then the viscous force caused by the rela-
tivistic Doppler effect would only be detectable at velocities infinitessimally
close to the speed of light.

The derivation of the Thomson scattering cross-section assumes that the
electric field produced by the electron is symmetric. However, the symme-
try of the electric field produced by a moving electron may depend on its
velocity. For example, the measured value of the electric field, as well as its
divergence, may be greater in front of a moving charge than behind it if the
measurements occur over a finite time. I postulate that at a distance r, the
electric field produced by a moving charge (qm) may be given by

E =
1

4πε0

1− v cos θ
c√

1− v2 cos2 θ
c2

qm

r2
r̂ . (46)
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Such an asymmetrical distribution of the electric field along the direction
of motion contrasts with the symmetrical velocity-dependent distribution of
the electric field postulated by the Special Theory of Relativity [158]. By
taking into consideration the possibility of a velocity-dependent asymmetry
in the electric field of a moving charge it may be possible to derive a more
relevant scattering cross-section to model the viscous force.

Standard scattering theory based upon interaction cross-sections are un-
able to account for a detectable temperature dependence in the impulse-
velocity curve. Consequently, a discovery of a temperature dependence in
an experimentally-obtained impulse-velocity curve would support the valid-
ity of using the geometrical cross-section as well as reify the proposal that
light itself prevents charged particles from moving faster than the speed of
light. On the other hand, the demonstration of a temperature independence
in an experimentally-obtained impulse-velocity curve would support the as-
sumption that the photon is best modeled as a mathematical point with a
geometrically undefined interaction cross-section and it is the relativity of
time that prevents any particle from moving faster than the speed of light.

Appendix C

I consider the mass of a charged particle moving through space composed
of a photon gas to be constant and invariant. However, the effect of Doppler-
shifted photons on resisting the movement of an electron moving through
a photon gas consisting of real photons can be interpreted in terms of an
increase in the effective mass of an electron that occurs as a consequence of
the dressing or renormalizing of the electron as it interacts with the virtual
photons of the quantum electrodynamical vacuum [159]. The velocity- and
temperature-dependent ratio of the apparent mass that results from the
viscous force to the constant mass (m) is given by the following equation

mapparent

m
=

Fapplied

Fapplied + FDoppler
. (47)

After rearranging, we get the apparent mass or effective mass of an electron

mapparent =
m

1 + FDopp

Fapplied

, (48)

where the second term in the denominator, which is velocity- and tempera-
ture-dependent, is analogous to the self-energy of the dressed electron.



Charged Particles are Prevented from Going Faster than the Speed . . . 2317

REFERENCES

[1] H. Frauenfelder, P.G. Wolynes, R.H. Austin, Rev. Mod. Phys. 71, S419
(1999).

[2] W. Ostwald, An Introduction to Theoretical and Applied Colloid Chemistry.
The World of Neglected Dimensions, John Wiley & Sons, New York 1922.

[3] A. Frey-Wyssling, Macromolecules in Cell Structure, Harvard University
Press, Cambridge 1957.

[4] T.H. Huxley, in Lay Sermons, Addresses, and Reviews, D. Appleton and Co.,
New York 1890, p. 120.

[5] J. Tyndall, in Fragments of Science Vol. II, D. Appleton and Co., New York
1898, p. 135.

[6] A.V. Hill, Living Machinery, Harcourt, Brace and Co., New York 1927.
[7] D. Burns, An Introduction to Biophysics, Macmillan, New York 1929.
[8] R. Höber, Physical Chemistry of Cell and Tissues, Blakiston, Philadelphia

1945.
[9] A. Szent-Györgyi, Nature of Life, Academic Press, New York 1948.

[10] A. Szent-Györgyi, Introduction to a Submolecular Biology, Academic Press,
New York 1960.

[11] A. Frey-Wyssling ed., Deformation and Flow in Biological Systems, North-
Holland Publishing Co., Amsterdam 1952.

[12] M. Tazawa, Protoplasma 48, 342 (1957).
[13] L.V. Heilbrunn, The Viscosity of Protoplasm, in Protoplasmatologia,

Springer-Verlag, Vienna 1958.
[14] N. Kamiya, Protoplasmic streaming, in Protoplasmatologia, Bd 8, 3a,

Springer-Verlag, Vienna 1959.
[15] N. Kamiya, Annu. Rev. Plant Physiol. 11, 324 (1960).
[16] N. Kamiya, Annu. Rev. Plant Physiol. 32, 205 (1981).
[17] N. Kamiya, Bot. Mag. Tokyo 99, 441 (1986).
[18] G. von Békésy, Experiments in Hearing, McGraw-Hill, New York 1960.
[19] D.M. Needham, Machina Carnis. The Biochemistry of Muscular Contraction

in its Historical Development, Cambridge University Press, Cambridge 1971.
[20] J.C. Eccles, The Understanding of the Brain, McGraw-Hill, New York 1973.
[21] A.F. Huxley, Reflections on Muscle, Princeton University Press, Princeton

1980.
[22] R.K. Clayton, Photosynth. Res. 19, 207 (1988).
[23] K.J. Niklas, Plant Biomechanics. An Engineering Approach to Plant Form

and Function, University of Chicago Press, Chicago 1992.
[24] H.E. Huxley, Annu. Rev. Physiol. 58, 1 (1996).
[25] G. Feher, Annu. Rev. Biophys. Biomol. Struct. 31, 1 (2002).



2318 R. Wayne

[26] P.S. Nobel, Physicochemical and Environmental Plant Physiology, Academic
Press, San Diego 2009.

[27] R. Wayne, Plant Cell Biology. From Astronomy to Zoology, Elsevier
Academic Press, Amsterdam 2009.

[28] T. Young, A Course of Lectures on Natural Philosophy and the Mechanical
Arts, printed for Joseph Johnson, London 1807.

[29] R. Brown, in The Miscellaneous Botanical Works of Robert Brown, Vol. I,
Robert Hardwicke, London 1866, p. 463.

[30] R. Brown, in The Miscellaneous Botanical Works of Robert Brown, Vol. I,
Robert Hardwicke, London 1866, p. 479.

[31] J.R. Mayer, in W.R. Grove et al., The Correlation and Conservation of
Forces. A Series of Expositions, D. Appleton and Co., New York 1868, p. 316.

[32] J.L.M. Poiseuille, Experimental Investigations upon the Flow of Liquids in
Tubes of Very Small Diameter, translated by W.H. Herschel, Rheological
Memoirs, E.C. Bingham ed., Vol. 1, Number 1, Lancaster Press, Inc., Easton
1940.

[33] A. Fick, Phil. Mag. 10, 30 (1855).
[34] F. Cajori, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy

and his System of the World, University of California Press, Berkeley 1946.
[35] H. Bondi, in Let Newton Be! A New Perspective on his Life and Works,

eds. J. Fauvel, et al., Oxford University Press, Oxford 1988, p. 241.
[36] R.S. Westfall, Science 179, 751 (1973).
[37] G.G. Stokes, in Mathematical and Physical Papers, Vol. III, Cambridge Uni-

versity Press, Cambridge 1922, p. 1.
[38] O. Reynolds, Phil. Mag. Ser. 5 20, 469 (1885).
[39] H. Freundlich, in A Symposium on the Structure of Protoplasm, ed. W. Seifriz,

Iowa State College Press, Ames 1942, p. 85.
[40] H. Freundlich, W. Seifriz, Z. Phys. Chem. 104, 233 (1923).
[41] W. Seifriz, J. Rheology 1, 261 (1930).
[42] W. Seifriz, Protoplasm, McGraw-Hill, New York 1936.
[43] W. Seifriz, J. Plowe, J. Rheology 2, 263 (1931).
[44] N. Kamiya, W. Seifriz, Exp. Cell Res. 6, 1 (1954).
[45] N. Kamiya, Protoplasma 45, 513 (1956).
[46] N. Kamiya, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 1 (1989).
[47] N. Kamiya, K. Kuroda, Proc. IVth Intern. Congr. Rheology. Part 4. Symp.

Biorheol., John Wiley, New York 1965, p. 157.
[48] N. Kamiya, K. Kuroda, Biorheology 10, 179 (1973).
[49] M. Tazawa, Cell Struc. Funct. 24, 55 (1999).
[50] J.C. Maxwell, Phil. Trans. Roy. Soc. Lond. 155, 459 (1865).
[51] J.C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York

1954.



Charged Particles are Prevented from Going Faster than the Speed . . . 2319

[52] O. Lodge, Modern Views of Electricity, Macmillan, London 1889.
[53] G.J. Stoney, Phil. Mag. Ser. 5 38, 418 (1894).
[54] J. Larmor, Aether and Matter, Cambridge University Press, Cambridge 1900.
[55] W. Kaufmann, The Electrician 48, 95 (1901).
[56] E. Whittaker, A History of the Theories of Aether and Electricity. The Clas-

sical Theories, Thomas Nelson and Sons, London 1951.
[57] J.J. Thomson, The Corpuscular Theory of Matter, Archibald Constable

& Co., London 1907.
[58] A. Bennett et al., Electrons on the Move, Walker and Co., New York 1964.
[59] E.A. Davis, I. Falconer, J.J. Thomson and the Discovery of the Electron,

Taylor & Francis, London 1997.
[60] I. Falconer, Physics Education 32, 226 (1997).
[61] J.J. Thomson, Phil. Mag. Ser. 5 44, 293 (1897).
[62] J.J. Thomson, Phil. Mag. Ser. 5 11, 229 (1881).
[63] J.J. Thomson, Recollections and Reflections, Macmillan, New York 1937.
[64] H.A. Lorentz, Proc. Roy. Netherlands Acad. Arts Sci. 6, 809 (1904).
[65] H.A. Lorentz, Problems of Modern Physics, Ginn and Co., Boston 1927.
[66] H.A. Lorentz, The Theory of Electrons, Dover, New York 1952, 2nd ed.
[67] A. Einstein, in The Collected Papers of Albert Einstein, Vol. 2, English trans-

lation, Princeton University Press, Princeton 1989, p. 140.
[68] M. Jammer, Concepts of Mass in Classical and Modern Physics, Dover, New

York 1961.
[69] M. Born, Einstein’s Theory of Relativity, Dover, New York 1962.
[70] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics,

Vol. I, Addison-Wesley, Reading 1963.
[71] H. Bondi, Relativity and Common Sense. A New Approach to Einstein,

Dover, New York 1964.
[72] D. Bohm, The Special Theory of Relativity, W.A. Benjamin, New York 1965.
[73] T.R. Sandlin, Am. J. Phys. 59, 1032 (1991).
[74] J.T. Cushing, Am. J. Phys. 49, 1133 (1981).
[75] A.K. Wróblewski, Acta Phys. Pol. B 37, 11 (2006).
[76] C.G. Adler, Am. J. Phys. 55, 739 (1989).
[77] N.D. Mermin, It’s about Time. Understanding Einstein’s Relativity, Prince-

ton University Press, Princeton 2005.
[78] S. Bais, Very Special Relativity, Harvard University Press, Cambridge 2007.
[79] L.B. Okun, Am. J. Phys. 77, 430 (2009).
[80] M.P. Sheetz, R. Chasan, J.A. Spudich, J. Cell Biol. 99, 1867 (1984).
[81] T. Shimmen, Bot. Mag. Tokyo 101, 533 (1988).
[82] K. Svoboda, S.M. Block, Cell 77, 773 (1994).
[83] K. Ito et al., J. Biol. Chem. 282, 19534 (2007).



2320 R. Wayne

[84] N. Kamiya, M. Tazawa, Protoplasma 46, 394 (1956).
[85] J. Dainty, B.Z. Ginzburg, Biochim. Biophys. Acta 79, 102 (1964).
[86] M. Tazawa, N. Kamiya, Annu. Rep. Biol. Works Fac. Sci. Osaka Univ. 13,

123 (1965).
[87] A. Finkelstein, Water Movement through Lipid Bilayers, Pores, and Plasma

Membranes. Theory and Reality, John Wiley & Sons, New York 1987.
[88] J.I. Schroeder, J. Gen. Physiol. 92, 667 (1988).
[89] R. Wayne, M. Tazawa, Protoplasma Suppl. 2, 116 (1988).
[90] P.B. Goodwin, Planta 157, 124 (1983).
[91] G. Blobel, Proc. Natl. Acad. Sci. USA 77, 1496 (1980).
[92] G.E. Palade, Science 189, 347 (1975).
[93] J.E. Rothman, Harvey Lectures 86, 65 (1992).
[94] R.W. Schekman, Harvey Lectures 90, 41 (1996).
[95] W. Haupt, Annu. Rev. Plant Physiol. 33, 204 (1982).
[96] S. Takagi, E. Kamitsubo, R. Nagai, Protoplasma 168, 153 (1992).
[97] K. Luby Phelps, D.L. Taylor, F. Lanni, J. Cell Biol. 102, 2015 (1986).
[98] E. Kamitsubo, M. Kikuyama, I. Kaneda, Protoplasma Suppl. 1, 10 (1988).
[99] S. Inoué, in Biophysical Science — A Study Program, eds. J.L. Oncley et al.,

John Wiley & Sons, Inc., New York 1959, p. 402.
[100] R.B. Nicklas, J. Cell Biol. 97, 542 (1983).
[101] P.K. Hepler, J. Cell Biol. 100, 1363 (1985).
[102] M.A. Sleigh, The Biology of Cilia and Flagella, Macmillan, New York 1962.
[103] R. Kamiya, G.B. Witman, J. Cell Biol. 98, 97 (1984).
[104] Y. Masuda, Bot. Mag. Tokyo Special Issue 1, 103 (1978).
[105] J.-P. Métraux, L. Taiz, Plant Physiol. 61, 135 (1978).
[106] A. Okamoto-Nakazato, J. Plant Res. 115, 309 (2002).
[107] T.E. Proseus, J.S. Boyer, Annu. Bot. 98, 93 (2006).
[108] E.M. Purcell, Am. J. Phys. 45, 3 (1977).
[109] O. Reynolds, in Papers on Mechanical and Physical Subjects, Vol. II,

(1881–1900), Cambridge University Press, Cambridge 1901, p. 51.
[110] N. Kamiya, K. Kuroda, Protoplasma 50, 144 (1958).
[111] M. Tazawa, U. Kishimoto, Plant Cell Physiol. 9, 361 (1968).
[112] R.E. Williamson, J. Cell Sci. 17, 655 (1975).
[113] S. Vogel, Life in Moving Fluids. The Physical Biology of Flow, Princeton

University Press, Princeton 1981.
[114] M.W. Denny, Air and Water. The Biology and Physics of Life’s Media,

Princeton University Press, Princeton 1993.
[115] M. Planck, Theory of Heat, Macmillan, New York 1949.
[116] Many biophysical cell biologists are familiar with microscopes based on the

Doppler Effect [J. Earnshaw, M. Steer, Proc. Roy.Micro. Soc. 14, 108 (1979)].



Charged Particles are Prevented from Going Faster than the Speed . . . 2321

[117] H.E. Ives, G.R. Stillwell, J. Opt. Soc. Am. 28, 215 (1938).
[118] My treatment is not based on the common assumption that an electron is a

mathematical point. Even the existence of a mathematical point is nothing
more than an unproven definition used by Euclid to build his system of geom-
etry; and the success of geometry does not prove that a mathematical point
exists in reality [J.L. Synge, Science, Sense and Nonsense, W.W. Norton &
Co., New York 1951]. After observing a “point” under the microscope, Robert
Hooke [R. Hooke, Micrographia, printed by Jo. Martyn and Ja. Allestry, Lon-
don 1665] found that the “Point of a Needle (which) is commonly reckon’d
for one . . . if view’d with a very good Microscope . . . appears a broad, blunt,
and very irregular end; not resembling a Cone, as is imagin’d . . . .” Likewise,
while the idea of defining an elementary particle as a mathematical point is a
good starting point in science, it too is making use of an unproven definition
and better resolution of the particle in the real world may lead to a visualiza-
tion of its extension. In this paper, I assume that all elementary particles in
reality have extension and moving particles have a “front” and a “back”. The
assumption that an electron has extension requires the additional assumption
that the charge is indivisible.

[119] Since the light source, mirrors and detector in the interferometer are all in
the same inertial frame, in the Michelson–Morley experiment v = 0 and the
speed of light given by Eq. 4 would be the same in any and all directions.

[120] A.A. Michelson, E.W. Morley, Am. J. Sci. 34, 333 (1887).
[121] A.A. Michelson, Light Waves and their Uses, University of Chicago Press,

Chicago 1907.
[122] M. Planck, Scientific Autobiography and Other Papers, Williams & Norgate,

London 1950.
[123] A. Einstein, 1907, in The Collected Papers of Albert Einstein, Vol. 2, English

translation, Princeton University Press, Princeton 1989, p. 232.
[124] S. Reinhardt et al., Nature Physics 3, 861 (2007).
[125] A. Einstein, 1917, in The World of the Atom, eds. H.A. Boorse, L. Motz,

Basic Books, New York 1966, p. 888.
[126] Later in this paper, the momentum of the source will be estimated by the

momentum of the photons at the peak of the black body distribution curve.
[127] A.H. Compton, Phys. Rev. 21, 483 (1923).
[128] E. Feenberg, H. Primakoff, Phys. Rev. 73, 449 (1948).
[129] This analysis assumes that the photon is re-emitted isotropically [125]. If the

radiation is reflected or emitted at the same angle that it is absorbed, the
viscous force would be twice as large.

[130] Assuming isotropy in the center of moment frame of the photon gas, where the
linear momentum coming from any direction !k(θ,ϕ) = !k(0, 0), the total lin-
ear momentum coming from all directions is !k =

∫ 2π
0

∫ π
0 !(θ,ϕ) sin θdθdϕ =

4π!(0, 0). The total linear momentum coming from all directions per unit
area per unit time is !k

∫ 2π
0

∫ π
2

0 cos θ sin θdθdϕ = !k
4 .



2322 R. Wayne

[131] W. Nernst, The New Heat Theorem. Its Foundations in Theory and Experi-
ment, Dover, New York 1969.

[132] This way of thinking also applies to neutral particles, including neutrons
and neutrinos that have a magnetic moment that may form an electrical
dipole that can couple to the radiation field. It would not apply to uncharged
particles without a magnetic moment.

[133] Let x = hc
λkT

∫
x3

[exp(x)−1]dx = π4

15 .

[134] H.A. Lorentz, Nature 113, 608 (1924).
[135] R. Wayne, in R. Wayne, Light and Video Microscopy, Elsevier Academic

Press, Amsterdam 2009, p. 277.
[136] L. Silberstein, Phil. Mag. Ser. 6 44, 257 (1922).
[137] L. Silberstein, A.P.H. Trivelli, Phil. Mag. Ser. 6 44, 956 (1922).
[138] A.P.H. Trivelli, L. Richter, Phil. Mag. Ser. 6 44, 252 (1922).
[139] While these geometrical cross-sections appear large, using Eq. (25), the ge-

ometrical cross-section calculated for a 10 MeV photon would be 1.23 ×
10−27 m2 or 0.123 barn, within the range of the experimentally determined
photon cross-sections. The cross-section is typically a measure of the prob-
ability that any given reaction will occur and the total cross-section is a
measure of the probability that all possible reactions will occur. The cross-
sections for individual processes that make up the total cross-sections vary by
many orders of magnitude and may be less than, equal to or greater than the
geometrical cross-section. Here I assume that a charged particle in thermal
equilibrium with the black body radiation field has a resonance for photons
in the radiation field with every possible angular wave number and thus the
probability of an electron interacting with the radiation field is unity. Con-
sequently, the effective cross-section equals the geometrical cross-section.

[140] This calculation can also be based on the fact that light radiated from an ob-
ject provides that object with linear momentum antiparallel to the direction
of radiation [G.N. Lewis, Phil. Mag. Ser. 6. 16, 705 (1908)]. Semi-classically,
the equivalent momentum of the photon of light is equal to mv. Since the
photon travels at the speed of light (c), its equivalent momentum is given by
mc. According to quantum theory, the momentum of the photon is given by
!k. By equating the classical and quantum descriptions of momentum, the
equivalent mass of a photon is given by the absolute value of !k/c, which
is equal to !ω/c2. Friedrich Hasenöhl derived the relationship, E ≈ mc2,
entirely based on classical reasoning making use of Maxwell’s light pressure
and equating the Poynting vector to the momentum vector multiplied by c2

[P. Lenard, Great Men of Science. A History of Scientific Progress, G. Bell
and Sons, London 1933; W. Pauli, Theory of Relativity, Dover, New York
1958].

[141] R.P. Feynman, Quantum Electrodynamics, W.A. Benjamin, New York 1962.
[142] R.P. Feynman, QED. The Strange Theory of Light and Matter, Princeton

University Press, Princeton 1985.
[143] P. Frank, Einstein. His Life and Times, Alfred Knopf, New York 1947.



Charged Particles are Prevented from Going Faster than the Speed . . . 2323

[144] Since the integral of force with respect to distance gives energy, integrating
Eq. 31 with respect to distance gives the relationship between energy the
apparent mass of a charged particle at velocities close to c.

[145] O. Reynolds, Nature 33, 429 (1886).
[146] J.A. Thomson, Introduction to Science, Henry Holt and Company, New York

1911.
[147] M. Planck, Verh. Deutsch. Phys. Ges. 8, 136 (1906).
[148] G.N. Lewis, Science 30, 84 (1909).
[149] G.N. Lewis, R.C. Tolman, Phil. Mag. Ser. 6 18, 510 (1909).
[150] R.C. Tolman, Phil. Mag. Ser. 6 21, 296 (1911a).
[151] R.C. Tolman, Phil. Mag. Ser. 6 22, 458 (1911b).
[152] R.C. Tolman, Phil. Mag. Ser. 6 23, 375 (1912).
[153] D. Kleppner, R.J. Kolenkow, An Introduction to Mechanics, McGraw-Hill,

New York 1973.
[154] W. Bertozzi, Am. J. Phys. 32, 551 (1964).
[155] J.J. Thomson, The Corpuscular Theory of Matter, Archibald Constable &

Company, London 1907.
[156] R.A. Sunyaev, Ya.B. Zel’dovich, Annu. Rev. Astron. Astrophys. 18, 537

(1980).
[157] E.M. Purcell, Electricity and Magnetism. Second Edition, McGraw-Hill,

Boston 1985.
[158] W.G.V. Rosser, Classical Electromagnetism via Relativity, Plenum Press,

New York 1968.
[159] R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem,

McGraw-Hill, Boston 1967.


